

YAAS-Yet Another Altitude Sensor based on Stereoscopic Vision
JOSÉ OLIVEIRA, RUI GONÇALVES

MAP-I Universidade do Minho Aveiro Porto
Doctoral Programme in Computer Science

PORTUGAL
jpo@di.uminho.pt – rjpg@fe.up.pt

http://www.map.edu.pt/i

Abstract—A new approach for altitude data extraction in

UAV’s based on stereoscopic vision is presented in this paper.
We propose an alternative solution for applications where the
precision acquired by normal methodology, using barometric
pressure sensor and GPS, is not satisfactory. The use of
stereoscopic vision to infer about the distances of objects
relative to cameras is a classical method in the computer vision
field. Our solution takes in account the computational
restrictions impose by an embedded system (component of a
Small_UAV).

Key-Words: Stereo Vision, UAVs, Altitude estimation, autonomous
landing.

I. INTRODUCTION
HIS paper report a new approach to extract the altitude
data of a UAV (Unmanned Aerial Vehicle) based in
computer vision techniques, in particular using the

stereoscopic vision methodology. Extract the altitude of an
AUV is not an easy issue to solve when the precision is
crucial. Some task/maneuvers require high precision in this
data field on the estimated state of the UAV, not only on the
landing maneuver (Fig. 1), where inaccurate data can
compromise the UAV entire mission, but also in other tasks
made on regular flight time. Namely: terrain mapping, target
tracking, structure tracking [[1] and even in normal
navigation.

.

The work was developed in a PC-104 system; however
our laboratory (ASASF/LSTS1) has been using Piccolo
Avionic System for small UAVs [2]. The Piccolo system
includes avionics hardware and software, ground-station
hardware and software, and a development and simulation
environment. The normal approach to estimate altitude,
used by Piccolo system, it is made by a barometric pressure
sensor, and a board temperature sensor. Together these
sensors provide the ability to measure true air speed and
altitude. Combining the GPS positioning data, using a
Kalman filter, reasonable altitude measurement can be
achieved for normal flight navigation. However this
methodology reveals to be insufficient for robust
autonomous landing maneuver due to the imprecise nature
of the sensors and the obligation of manually feeding the
system with the absolute altitude (relative to the sea surface)
of the landing track.

We propose a new methodology which upgrades the
system for a new step of autonomation, adding back the
factor of human intervention and facilitating the system to
face unpredictable scenarios (e.g. autonomous emergence
landing in an unknown track, atmospheric pressure
variations, etc). This method uses stereoscopic vision to
provide another source of data to the system. As in any other
stereoscopic vision based system the setup requires accurate
calibrations of the cameras. For the calibration phase,
described in this paper, we used the Calib Matlab toolbox
[3]. This software presents us the intrinsic parameters.

The paper is organized as follows. In section 2 we

describe the platform in terms of hardware and software. In
section 3 we present implementation details and how we
applied the different APIs. Section 4 is used to describe the
camera setup calibration using the Calib Matlab toolbox. In
the last section touch the correlation and triangulation
problems.

1 LSTS- Laboratório de Sistemas e Tecnologias Subaquáticas

T

Fig. 1. At left AUV autonomous landing maneuver
using pressure sensor combined with GPS for altitude
estimation and knowing a priori the landing track
altitude. At right automatic real-time terrain mapping
based on the UAV pose.

mailto:jpo@di.uminho.pt
mailto:rjpg@fe.up.pt

II. SYSTEM PLATFORM
In this section we describe the test platform used in terms

of hardware and software:

A. Hardware
The processing module is a PM-LX-800 [8], a PC/104

form factor embedded computer. The PM-LX-800 is
particularly suitable for low power and fan-less applications
and is equipped with an on-board low-power consumption
and high performance AMD Geode LX 800 processor. It
also contains a DDR SO-DIMM socket that supports 1GB of
memory.

Fig. 2 - PC-104 Processing module PM-LX-800

The frame grabber is an Imagenation PXC200A [9] series

color frame grabber. This frame grabber is able to handle up
to four cameras and NTSC, PAL, and SECAM Video
formats.

Fig. 3 - Frame Grabber Imagenation PXC200

The cameras used were 12 VDC 380 line CCD cameras.

Fig. 4 - CCD camera

B. Software
The PC104 processing unit is running Arch Linux, a

Linux based operating system, with an 2.6.22 linux kernel
optimized for the i586 architecture.

The image acquisition is done using the V4L2 (Video For

Linux Two) API [4]. This low-level API defines a kernel
interface for analog radio and video capture and output
drivers. The main method of communication of this API is
the ioctl system call.

The image processing is done using OpenCV [5] (The

Open Source Computer Vision Library). This library
includes over 500 functions implementing computer vision,
image processing, and general-purpose algorithms. Its
portability is rather good as it compiles and runs in every
major platform: Win32, Linux, and MacOSX. Its
performance can even be further boosted using the Intel IIP
(Integrated Performance Primitives) library. Also, its BSD-
like license makes its free for academic and commercial use.

III. IMPLEMENTATION
In this section we show how the combination of Video

For Linux Two and OpenCV APIs was made.

A. Image acquisition
The image acquisition was performed through the V4L2

interface for two main reasons: i) performance, and ii) the
lack of stability of image acquisition functions of the
OpenCV library v1.0.0. The lack of stability in our setup
could be exposed by the following code, which simply tried
to acquire a set of images and save them to disk:

CvCapture* capture =
 cvCaptureFromCAM(CV_CAP_ANY);
IplImage* image = NULL;

for (i = 0; i < 30; ++i)
{
 IplImage* frame = cvQueryFrame(capture);
 snprintf(fname, 256, "frame-%03d.jpg", i);
 cvSaveImage(fname, frame);
}
cvReleaseCapture(&capture);

List. 1 - OpenCV code to expose the unstability of video acquisition

The execution of above code usually aborted during the

dequeuing of a memory mapped buffer in the V4L driver
(according to the error message, the code aborted during the
invocation of the V4L2 VIDIOC_DQBUF ioctl call).

A successful image acquisition using the V4L2 interface

relies in a proper setup of the image acquisition format and
in the proper manipulation of memory mapped memory
buffers (V4L2 ioctls VIDIOC_QBUF e VIDIOC_DQBUF).

fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = WIDTH;
fmt.fmt.pix.height = HEIGHT;
fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_BGR24;
fmt.fmt.pix.field = V4L2_FIELD_INTERLACED;

ioctl (fd, VIDIOC_S_FMT, &fmt);

List. 2 - V4L2 input video image capturing format

Mplayer turned out to be one of the best Unix tools with
V4L2 support. As it was rather tolerant to missing V4L2
ioctl calls, it became an excellent testing and debugging tool.
Its use allows us to debug our code when we were trying to
test it in a MacBook running Fedora 9 and using its iSight
camera (partial success). Using the following command we
can see how it is possible to specify the driver type, the
device to use, and V4L2 options that can be passed to the
driver:

mplayer -tv \
driver=v4l2:device=/dev/video0:input=1:width=640
:height=480:fps=30 tv://

List. 3 - mplayer command line options to access the frame grabber

B. Image processing
Even though the OpenCV API could not handle in a proper
way (specify the input channel of the frame grabber) the
hardware device initialization and perform the video capture
it was a fundamental library for image processing operation
of our project. To use OpenCV we had to find a compatible
image format representation in memory between V4L2 and
OpenCV. Using the V4L2 image format constant
V4L2_PIX_FMT_BGR24 we were able to transfer the
image buffer from V4L2 to an OpenCV matrix directly
without copying it pixel by pixel. The following OpenCV
code creates an OpenCV object representing the image from
from V4L2 image buffer.

CvMat img = cvMat(HEIGHT, WIDTH,
 CV_8UC3,
 v4l2_image_buffer);

List. 4 - V4L2 to OpenCV image convertion

Having two image objects, acquired from the two cameras
(channels) with V4L2 API, we became able to use the
OpenCV functions to resolve the stereo vision
correspondence problem. The RANSAC algorithm built in
OpenCV can now be used to extract matching points in the
images.

IV. CAMERA CALIBRATION
In order to reconstruct the 3D coordinates of the world

points we have to triangulate the correspondence points,
found in a previous step of image processing. For this
operation to be successful we must know exactly the
intrinsic and extrinsic cameras parameters. We used the
Calib Toolbox to calculate these parameters. This toolkit
only requires the cameras to observe a planar pattern shown
at a few (at least two) different orientations. Either the
camera or the planar pattern can be freely moved. The
motion need not be known. Radial lens distortion is modeled
[7].

Once we install the cameras in the airplane eight
simultaneous shots were taken from the cameras, from the
calibration pattern, and then were fed to the calibration
toolbox. The following variables were obtained: Intrinsic
from the left and right cameras (focal length, principle point,
skew and distortion) and the extrinsic parameters of the
cameras setup (rotation and transaction vectors; relative
position of the right camera with regard to the left camera).

Fig. 5- Extrinsic parameters of the cameras in the AUV

With these results the computational system is fully

configured. Reconfigurations of system will be only
required if the position of the cameras are changed or the
cameras themselves. These calibration results are also
required for the correct computation of the world
coordinates done by the triangulation procedure.

void distortion (double k[5], double xd[2],
 double x[2]);
void normalize (double x_kk[2], double fc[2],
 double cc[2], double kc[5],
 double alpha_c, double xn[2]);
void triangulation (
 double xL[2], double xR[2],
 double om[3], double T[3],
 double fc_left[2], double cc_left[2],
 double kc_left[5], double alpha_c_left,
 double fc_right[2], double cc_right[2],
 double kc_right[5], double alpha_c_right,
 double XL[3], double XR[3]
);

List. 5 - Interface of the triangulation procedure library

V. FUTURE WORK

For different mission profiles, e.g. landing and normal
flight, it would be advisable have different preset cameras
pose configurations. The cameras pose could change using
pan-and-tilt mechanisms. To facilitate the correspondence
problem, particularly during the landing manoeuvre, a laser
beam could be used. The use of digital cameras would
release the frame grabber hardware, releasing payload, and
CPU time.

ACKNOWLEDGMENT
Thanks for professor Manuel João Ferreira for providing

the triangulation code and to professors Miguel Coimbra and
Cristina Santos for insightfull comments and João Cunha for
suggestions to the hardware setup.

REFERENCES

[1] R. Bencatel, J.Correia, J.Sousa, G. Gonlçalves, Élói Pereira, “Video

Tracking Control algorithms for UAV” , Proceedings of DSCC 2008
ASME 2008 Dynamic Systems and Control Conference October 20-
22, 2008, Ann Arbor, Michigan, USA.

[2] Piccolo home page, <www.cloudcaptech.com>, 2008
[3] Calib Matlab toolbox,

<http://www.vision.caltech.edu/bouguetj/calib_doc/> , 2007
[4] Video for Linux Two API Specification; Revision 0.24; Michael H.

Schimek and al.;
<http://www.linuxtv.org/downloads/video4linux/API/V4L2_API/>

[5] Open Source Computer Vision Library;
<http://www.intel.com/technology/computing/opencv/>

[6] Learning OpenCV- Computer Vision with the OpenCV Library; Gary
Bradski, Adrian Kaehler; first edition August 2008 (est.);
<http://oreilly.com/catalog/9780596516130/>

[7] Flexible Camera Calibration By Viewing a Plane From Unknown
Orientations; Zhebgyou Zhang; Computer Vision, 1999. The
Proceedings of the Seventh IEEE International Conference on Volume
1, Issue , 1999 Page(s):666 - 673 vol.1;

[8] PM-LX-800 PC104 Board, <http://www.ieiworld.com>.
[9] ImageNation PXC200 Frame Grabber,

<http://www.imagenation.com/pxcfamily.html>

http://www.vision.caltech.edu/bouguetj/calib_doc/

	I. INTRODUCTION
	II. System Platform
	A. Hardware
	B. Software

	III. Implementation
	A. Image acquisition
	B. Image processing

	IV. Camera Calibration
	V. Future Work

